Delay Embeddings for Forced Systems. II. Stochastic Forcing
نویسندگان
چکیده
Takens’ Embedding Theorem forms the basis of virtually all approaches to the analysis of time series generated by nonlinear deterministic dynamical systems. It typically allows us to reconstruct an unknown dynamical system which gave rise to a given observed scalar time series simply by constructing a new state space out of successive values of the time series. This provides the theoretical foundation for many popular techniques, including those for the measurement of fractal dimensions and Liapunov exponents, for the prediction of future behaviour, for noise reduction and signal separation, and most recently for control and targeting. Current versions of Takens’ Theorem assume that the underlying system is autonomous (and noise free). Unfortunately this is not the case for many real systems. In a previous paper, one of us showed how to extend Takens’ Theorem to deterministically forced systems. Here, we use similar techniques to prove a number of delay embedding theorems for arbitrarily and stochastically forced systems. As a special case, we obtain embedding results for Iterated Functions Systems, and we also briefly consider noisy observations. 2 Embedding Stochastic Systems
منابع مشابه
On the Moment Stability of Stochastic Parametrically Forced Equations with Rank One Forcing
We derive simplified formulas for analyzing the moment stability of stochastic parametrically forced linear systems. This analysis extends the results in [3], where, assuming the stochastic excitation is small, the stability of such systems was computed using a weighted sum of the extended power spectral density over the eigenvalues of the unperturbed operator. In this paper, we show how to con...
متن کاملDelay-dependent robust stabilization and $H_{infty}$ control for uncertain stochastic T-S fuzzy systems with multiple time delays
In this paper, the problems of robust stabilization and$H_{infty}$ control for uncertain stochastic systems withmultiple time delays represented by the Takagi-Sugeno (T-S) fuzzymodel have been studied. By constructing a new Lyapunov-Krasovskiifunctional (LKF) and using the bounding techniques, sufficientconditions for the delay-dependent robust stabilization and $H_{infty}$ control scheme are p...
متن کاملOn the Stability of Stochastic Parametrically Forced Equations with Rank One Forcing
We derive simplified formulas for analyzing the stability of stochastic parametrically forced linear systems. This extends the results in [2] where, assuming the stochastic excitation is small, the stability of such systems was computed using a weighted sum of the extended power spectral density over the eigenvalues of the unperturbed operator. In this paper, we show how to convert this to a su...
متن کاملComputational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملT-S FUZZY MODEL-BASED MEMORY CONTROL FOR DISCRETE-TIME SYSTEM WITH RANDOM INPUT DELAY
A memory control for T-S fuzzy discrete-time systems with sto- chastic input delay is proposed in this paper. Dierent from the common assumptions on the time delay in the existing literatures, it is assumed in this paper that the delays vary randomly and satisfy some probabilistic dis- tribution. A new state space model of the discrete-time T-S fuzzy system is derived by introducing some stocha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Nonlinear Science
دوره 13 شماره
صفحات -
تاریخ انتشار 2003